If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41=-16t^2+120t+4
We move all terms to the left:
41-(-16t^2+120t+4)=0
We get rid of parentheses
16t^2-120t-4+41=0
We add all the numbers together, and all the variables
16t^2-120t+37=0
a = 16; b = -120; c = +37;
Δ = b2-4ac
Δ = -1202-4·16·37
Δ = 12032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12032}=\sqrt{256*47}=\sqrt{256}*\sqrt{47}=16\sqrt{47}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-16\sqrt{47}}{2*16}=\frac{120-16\sqrt{47}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+16\sqrt{47}}{2*16}=\frac{120+16\sqrt{47}}{32} $
| 14p-4=24 | | 3/2(1/2x-10/3=1/6(7x+10) | | 9v+4=14v-6 | | n/75=54 | | x=5x=-14 | | 13y=8y+15 | | 7x+8+9x-4=180 | | 8j=–9−j | | 11z=(11^3)^3 | | -3g=10-4g | | 5t=9-4t | | -6x+9=2-5{x-1} | | 1000-w=087 | | 8d-5=7d+2 | | 16q-9q=14 | | -2(1-x)-2x=6x-(1+6x) | | -12+m/3=3 | | 4(x=+3)-7=x+3(x+1) | | 30=6j-18 | | 4r+16r+20=-20+10r | | 15/8x=226 | | 5h(2h-3)+2h=21 | | 2x+8=10x+2 | | 4v=10-6v | | 4x-2=-4x-6 | | -17+13c=14c | | -4+4x+12=18+18 | | 28=7j-7 | | 7(1x-5)=-70 | | 2b=–9+b | | 19d-16d=-9 | | -4+4x+18=18+12 |